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The left Bernstein quasi-interpolant operator introduced by Sablonnie� re is a kind
of modified Bernstein operator that has good stability and convergence rate proper-
ties. However, we recently found that it is not very convenient for practical applica-
tions. Fortunately, we showed in a previous paper that there exist many operators
having stability and convergence rate properties similar to those of Sablonnie� re's
operator. In this paper, we introduce another specific class of such operators
generated from the operator introduced by Stancu. We present detailed results
about this class, some of which can be applied to numerical quadrature. Finally, we
clarify its advantages and assert that it is more natural and more convenient, both
theoretically and practically, than that of Sablonnie� re. Our paper, at the same time,
provides several new results regarding Stancu's operator. � 1999 Academic Press

1. INTRODUCTION

The left Bernstein quasi-interpolant operator B(K )
n (n # N, K # N0 =

def

N _ [0]) was introduced by Sablonnie� re in [6, 7] and redefined by us in
[3] as

B (K )
n f = :

[K, n]

k=0

U n
k(Bn f )[k] ( f : [0, 1] � R),

where Bn is the Bernstein operator of order n and U n
k are the unique poly-

nomials satisfying

Ln f = :
n

k=0

U n
k(Bn f )[k] ( f : [0, 1] � R), (1.1)

where Ln is the Lagrange operator of the same nodes as Bn . (The symbol
�[K, n]

k=0 stands for �min[K, n]
k=0 and (Bn f )[k] stands for (Bn f ) (k)�k !. We use

the notations like these throughout this paper.) It was shown in [7] that
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B(K )
n f &f =O(n&([K�2]+1)) (pointwise) for every f sufficiently smooth, while

the boundedness of [&B (K )
n &]n was guaranteed in [11], where & }& is the

operator norm subordinate to the uniform norm on C[0, 1]. Furthermore,
we generalized and refined these results in [3].

However, B (K )
n is not very convenient for practical applications. The

sequence [B (K )
n ]n is indeed stable in the sense that it is uniformly bounded,

but the value of &B (K )
n & grows extremely fast as K increases, especially when

n(�K) is near to K. In fact, when n=K, the operator B (K)
n reduces to LK ,

whose norm grows exponentially with respect to K, as is well known.
Table I is a result of numerical experiments (this kind of table was given
also in [6]), where we omit the values in the case n<K because they are
not defined originally, and according to our new definition, B (K )

n trivially
reduces to B(n)

n (=Ln).
There is another defect regarding B (K )

n . Though it was introduced for the
purpose of accelerating convergence of Bernstein polynomials, the corres-
pondence between the parameter K and the order of its convergence rate
is not one-to-one. In fact, for every nonnegative integer :, the convergence
rates of [B (2:)

n f ]n and [B (2:+1)
n f ]n are both O(n&(:+1)). The operator B (K )

n

was constructed by truncating at k=K the expansion (1.1) of Ln , but the
above fact suggests that the mode of truncation is not essential for our
original purpose.

Fortunately, we showed in [3] that there exist many operators having
stability and convergence rate properties similar to those of Sablonnie� re's
operator. In this paper, we will introduce another specific class of such
operators. The new operator : Bn (n # N, : # N0) is generated from the

TABLE I

Approximate Values of &B(K )
n &

K

n 2 3 4 5 6 7 8 16

2 1.250 �� �� �� �� �� �� ��
3 1.250 1.631 �� �� �� �� �� ��
4 1.250 1.529 2.208 �� �� �� �� ��
5 1.204 1.482 2.100 3.106 �� �� �� ��
6 1.196 1.454 2.038 2.980 4.549 �� �� ��
7 1.189 1.436 1.997 2.899 4.389 6.930 �� ��
8 1.180 1.424 1.969 2.843 4.279 6.714 10.946 ��
9 1.175 1.415 1.948 2.801 4.199 6.557 10.639 ��

10 1.172 1.407 1.932 2.769 4.137 6.438 10.408 ��
16 1.158 1.385 1.887 2.676 3.951 6.078 9.713 934.534
32 1.150 1.372 1.854 2.607 3.817 5.820 9.218 832.241
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operator introduced by Stancu [8], and also can be regarded as a trun-
cated operator of Ln , but the mode of truncation is distinct from that of
the preceding operator. We will present some detailed results about our
new operator and several propositions about Stancu's operator. Finally, we
will compare it with Sablonnie� re's operator, clarifying advantages of our
new operator.

2. MAIN RESULTS

2.1. Definition
Stancu [8] introduced the operator P(s)

n for every n # N and for every
s # R satisfying >n&1

+=0 (1++s){0, as

P(s)
n f (x)= :

n

&=0

f \&
n+\

n
&+

[>&&1
+=0 (x++s)][>n&&&1

+=0 (1&x++s)]

>n&1
+=0 (1++s)

( f : [0, 1] � R, x # [0, 1]).

(We adopt the convention that �q
p } =0, >q

p } =1 if q<p.) This operator
has the two identities

P(0)
n f (x)= :

n

&=0

f \&
n+\

n
&+ x&(1&x)n&&=Bn f (x),

P( &1�n)
n f (x)= :

n

&=0

f \&
n+\

nx
& +\

n(1&x)
n&& + =Ln f (x),

which mean that the class of Stancu operators contains the Bernstein and
the Lagrange ones. Stancu investigated in particular the case s�0 as a
class of positive linear operators. However, here we treat Stancu's operator
from quite a different standpoint. We use it to introduce a new class of
operators as follows.

Definition 2.1. We define the modified Bernstein operator : Bn (of
order n # N and sharpness degree : # N0 _ [�]) as

:Bn f (x)= :
:

j=0

(&1) j

n jj !
� jP(s)

n f (x)
�s j } s=0

( f : [0, 1] � R, x # [0, 1]);

that is, : Bn f (x) (for fixed f, x) is generated by putting s=&1�n in the
Maclaurin series truncated at degree : of P(s)

n f (x) regarded as a function
of s.
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Remark. The function P(s)
n f (x) (with respect to s) is analytic where

(n&1) |s|<1 because

|1++s|�1&+ |s|�1&(n&1) |s|>0 (+=0, 1, ..., n&1),

and s=&1�n belongs to the region (n&1) |s|<1.
Note that the identities 0Bn=P(0)

n =Bn and �Bn=P( &1�n)
n =Ln hold.

In this context, : Bn can be regarded as an ``intermediate'' operator between
Bn and Ln . Though Sablonnie� re's operator B (K )

n is also an intermediate one
between them, our new operator is substantially distinct from it. (Now we
present Table II for values of &:Bn&, which will be compared with Table I
later.)

2.2. Representations and Properties of :Bn

Now we provide two kinds of representations of our operator.

Theorem 2.1. The modified Bernstein operator :Bn has the representa-
tion

:Bn f= :
2:

k=0

(Bn f )[k] :
:

j=0

( j, k

n j

= :
:

j=0

1
n j :

2j

k=0

(j, k(Bn f )[k] ( f : [0, 1] � R),

where (j, k are the polynomials of degree at most k determined by the
recursion formula

TABLE II

Approximate Values of &:Bn &

:

n 1 2 3 4 5 6 7 8

2 1.083 1.161 1.204 1.227 1.238 1.244 1.247 1.249
3 1.089 1.212 1.334 1.427 1.493 1.538 1.569 1.589
4 1.125 1.234 1.405 1.567 1.708 1.824 1.915 1.986
5 1.125 1.250 1.451 1.665 1.879 2.078 2.255 2.408
6 1.134 1.261 1.483 1.735 2.012 2.296 2.574 2.834
7 1.133 1.269 1.506 1.789 2.118 2.482 2.862 3.247
8 1.133 1.275 1.524 1.831 2.204 2.639 3.120 3.637
9 1.136 1.280 1.538 1.865 2.276 2.775 3.351 4.000

10 1.135 1.283 1.549 1.893 2.337 2.891 3.556 4.335
16 1.138 1.296 1.589 1.992 2.563 3.349 4.415 5.849
32 1.140 1.306 1.622 2.081 2.777 3.819 5.379 7.739
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(j, &1 =0 ( j�0),

(0, 0=1,

(j, 0=0 ( j�1),

(0, k=0 (1�k�n),

(j, k+1=k((j&1, k+1&e1 (j&1, k&e2(j&1, k&1)

( j�1, 0�k�n&1),

where e1(x)=1&2x, e2(x)=x(1&x).

Remark 1. In this paper, we generally define the polynomials ep

( p # N0) as e2p(x)=(x(1&x)) p, e2p+1(x)=(1&2x) e2p(x).

Remark 2. Since (j, k are independent of n and we can take n
arbitrarily large, we can understand that (j, k are defined for all j, k # N0 .

Theorem 2.2. The modified Bernstein operator :Bn has the explicit
representation

: Bn f (x)= :
n

&=0

f \&
n+ :

n

k=0

(&1)n&k \n
k+\

kx
& +\

k(1&x)
n&& +\k

n+
:

,

( f : [0, 1] � R, x # [0, 1]).

Note that we can extend the definition of : Bn for all nonnegative real
numbers : by using this theorem. This is a surprising fact.

The following theorem, which concerns stability and convergence rate, is
the theoretically most important result in this paper.

Theorem 2.3. For each : # N0 , the sequence [: Bn]�
n=1 has the following

properties:

(1) for all p, q, r # N0 , there exists a constant M such that for all n # N
and for all f # C r[0, 1],

&e2p(:Bn f ) (q+r)&�Mnq&min[ p, [q�2]] & f (r)&;

(2) for all ;, # # N0 (;�:) and for all f # C2;+#[0, 1],

&(:Bn f ) (#)& f (#)&=o(n&;) (n � �);
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(3) for all # # N0 and for all f # C 2:+#+2[0, 1],

lim
n � �

n:+1(( :Bn f ) (#)& f (#))

=&\ :
2:+2

k=0

(:+1, k f [k]+
(#)

in the sense of & }&;

where & }& is the uniform norm on C[0, 1].

2.3. Application to Numerical Quadrature
We denote by I the integration operator defined as

If =|
1

0
f (x) dx ( f # C[0, 1]),

and we define the integrating operator :In as

:In=I:Bn .

Theorem 2.3 readily implies the following corollary.

Corollary 2.1. For each : # N0 , the sequence [: In]�
n=1 has the follow-

ing properties:

(1) there exists a constant M such that for all n # N and for all
f # C[0, 1],

|:In f |�M & f &;

(2) for all ; # N0 (;�:) and for all f # C2;[0, 1],

|:In f &If |=o(n&;) (n � �);

(3) for all f # C2:+2[0, 1],

lim
n � �

n:+1( : In f &If )=&I :
2:+2

k=0

(:+1, k f [k].

Now let us consider how to calculate :In f. It is a detour to represent
:Bn f as the form in Theorem 2.1 and then integrate it on [0, 1]. In fact,
there is a more direct way to calculate :In f.

Theorem 2.4. The integrating operator : In has the representation

:In f = :
n

&=0

f \&
n+ : wn, & ,
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where

0wn, & =
1

n+1
,

: wn, &=
1
n _1& :

:&1

k=0

(&1)k #k+1 \(&1)& \k
&++(&1)n&& \ k

n&&++
_n(k) :

:&1

j=k

S( j&1, k&1)
n j & (:�1),

where #k=�1
0 ( x

k) dx (k # N0) and S( j, k) are the Stirling numbers of the
second kind with the conventional definition S(&1, &1)=1, S( j, &1)=0
( j�0).

Remark 1. The symbol n(k) stands for >k&1
+=0 (n&+).

Remark 2. There are various notations for the Stirling numbers of the
second kind [1, p. 822], but we adopt the symbol S( } , } ) because it has
often been used recently (e.g., [10, Chapter 13]).

Let us denote by B (n)
& ( } ) the Bernoulli polynomial of order n and degree

& [4, pp. 124�127]. (We use the symbol B instead of B to distinguish the
Bernoulli polynomials from the Bernstein operators.) Then the identities
#k=B (k)

k (1)�k ! and S( j, k)=( j
k) B (&k)

j&k (0) hold [4, pp. 130, 133]. It is
interesting that these two systems of numbers are unified in terms of the
Bernoulli polynomials.

Though we can calculate #k 's by way of the Bernoulli polynomials, there
is a more direct way to calculate them. Let 0<|t|<1 and consider their
generating function

:
�

k=0

#k t k=|
1

0
(1+t)x dx=

t
log(1+t)

.

(An equivalent identity for B(k)
k (1) appears in [4, p. 135].) Since we can

expand

log(1+t)
t

= :
�

l=0

(&t)l

l+1
,

we can calculate

\ :
�

l=0

(&t) l

l+1 +\ :
�

k=0

#k t k+= :
�

k=0

t k :
k

l=0

(&1) l #k&l

l+1
=1.
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Equating coefficients of tk, we obtain the recursion formula

#0=1, #k= :
k

l=1

(&1) l&1 #k&l

l+1
(k�1).

Some #k 's are evaluated as follows:

#1=
1
2

, #2=&
1

12
, #3=

1
24

, #4=&
19

720
, #5=

3
160

.

Now let 2h , {h be the forward and backward difference operators,
respectively, of stepsize h (h # R, h>0). Then the above theorem and the
identity

(&1)k 2k
1�n f (0)+{k

1�n f (1)

=(&1)k :
k

&=0

(&1)k&& \k
&+ f \&

n++ :
k

&=0

(&1)& \k
&+ f \1&

&
n+

= :
k

&=0

(&1)& \k
&+ f \&

n++ :
n

&=n&k

(&1)n&& \ k
n&&+ f \&

n+
= :

n

&=0

f \&
n+ \(&1)& \k

&++(&1)n&& \ k
n&&++

imply the following corollary.

Corollary 2.2. When :�1, the integrating operator :In can be
represented as

:In f=
1
n _ :

n

&=0

f \&
n+& :

:&1

k=0

#k+1(2k
1�n f (0)+(&1)k {k

1�n f (1)) n(k)

_ :
:&1

j=k

S( j&1, k&1)
n j & .

This corollary means that : In(:�1) brings us a kind of trapezoidal rule
with end modifications. Particularly when :=1, it coincides with the
ordinary trapezoidal rule.

Now let us consider positivity of the linear operator : In . Theorem 2.1
(or, Proposition 3.1 and Definition 2.1) readily implies :Bn f =f for all
linear functions f, and in particular, :In1=1. Therefore, as long as the
linear operator :In is positive, the identity &:In&=1 holds, which means
:In is the best for stability. On the other hand, from the viewpoint of con-
vergence rate, it is desirable to choose : as large as possible. For this
reason, we naturally become interested in the problem of determining the
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maximum of : that preserves positivity of :In for each n. We have the
following result.

Theorem 2.5. For each n # N, we define :(n)=max[: # N0 _ [�] | : In

is positive]. Then

� (1�n�7, n=9)

13 (n=8, 10, 11)

12 (n=12)

:(n)= 11 (13�n�15)

10 (16�n�23)

9 (24�n�104)

8 (n�105).

Furthermore, all the :In (:<:(n), : # N0) are positive.

Remark. The operator �In means that

�In f =|
1

0
�Bn f (x) dx=|

1

0
Ln f (x) dx;

that is to say, �In is the operator corresponding to the Newton�Cotes rule.

We present Table III, which is a result of numerical experiments on the
Runge function f (x)=1�(1+25(2x&1)2). This suggests that our ``inter-
mediate'' rule between the trapezoidal and the Newton�Cotes ones is very
effective for numerical quadrature.

TABLE III

Approximate Values of |:In f &If | When f (x)=1�(1+25(2x&1)2)

:

n 1 8 9 �

4 5.39_10&2 1.30_10&2 1.89_10&2 3.73_10&2

8 3.77_10&3 4.61_10&3 1.08_10&2 1.25_10&1

16 6.90_10&5 1.83_10&5 4.11_10&5 8.99_10&1

32 2.41_10&5 1.48_10&9 1.22_10&9 1.51_102

64 6.02_10&6 3.34_10&13 3.75_10&14 1.51_107

128 1.50_10&6 4.48_10&16 2.73_10&17 ��
256 3.76_10&7 7.24_10&19 2.21_10&20 ��
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3. PROPOSITIONS REGARDING STANCU'S OPERATOR

Before proving the main results, here we collect several propositions
about Stancu's operator, most of which are new.

Proposition 3.1. Stancu's operator P(s)
n has the following representation

in terms of the difference operators:

P(s)
n f (x)= :

n

r=0

2r
1�n f (0) \n

r+ `
r&1

+=0

x++s
1++s

(3.1)

= :
n

r=0

(&1)r {r
1�n f (1) \n

r+ `
r&1

+=0

1&x++s
1++s

. (3.2)

Remark. In particular, by considering the cases s=0 and s=&1�n, we
obtain

Bn f (x)= :
n

r=0

2r
1�n f (0) \n

r+ xr= :
n

r=0

(&1)r { r
1�n f (1) \n

r+ (1&x)r,

Ln f (x)= :
n

r=0

2r
1�n f (0) \nx

r + = :
n

r=0

(&1)r {r
1�n f (1) \n(1&x)

r + .

The latter is nothing but Newton's forward (backward) interpolation
formula.

Proofs of this proposition appear in [8, 9], but here we give a more
direct one.

Proof of Proposition 3.1. Suppose s{0 and let a=&1�s. Then the
right-hand side of (3.1) can be calculated as

:
n

r=0

2r
1�n f (0) \n

r+
(ax) (r)

a(r) = :
n

r=0

:
r

&=0

(&1)r&& \r
&+ f \&

n+\
n
r+

(ax) (r)

a(r)

= :
n

&=0

f \&
n+\

n
&+ :

n

r=&

(&1)r&& \n&&
r&&+

(ax) (r)

a(r)

= :
n

&=0

f \&
n+\

n
&+ :

n&&

r=0

(&1)r \n&&
r + (ax) (r+&)

a(r+&)

= :
n

&=0

f \&
n+\

n
&+

(ax) (&)

a(n) :
n&&

r=0

(&1)r \n&&
r +

_(ax&&) (r) (a&r&&)(n&r&&).
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By using the identities a(m)=(&1)m (&a+m&1) (m) and �m
r=0 ( m

r )
a(r)b(m&r)=(a+b) (m), the inner sum can be calculated as

:
n&&

r=0

(&1)r \n&&
r + (ax&&) (r) (&1)n&r&& (&a+n&1) (n&r&&)

=(&1)n&& :
n&&

r=0
\n&&

r + (ax&&) (r) (&a+n&1)(n&r&&)

=(&1)n&& (&a(1&x)+n&&&1)(n&&)=(a(1&x)) (n&&).

Thus the right-hand side of (3.1) equals P(s)
n f (x) if s{0. Since both sides

of (3.1) are continuous at s=0, (3.1) is valid also when s=0. Letting
f� (x)= f (1&x) and replacing f by f� and x by 1&x imply (3.2). K

Proposition 3.2. Stancu's operator P(s)
n has the degree-preserving

property

P(s)
n Pm �Pm (0�m�n),

where Pm is the set of polynomials of degree at most m # N0 with real
coefficients.

Proof. Let f # Pm . Then 2r
1�n f (0)=0 if r>m. Proposition 3.1 implies

P(s)
n f # Pm . K

Proposition 3.3. There exist unique U (s)
k # Pk(0�k�n) such that

P(s)
n f = :

n

k=0

U (s)
k (Bn f )[k] ( f : [0, 1] � R),

where U (s)
k are determined by the recursion formula

U (s)
&1 =0, U (s)

0 =1,

(1+ks) U (s)
k+1=ks(e1 U (s)

k +e2U (s)
k&1) (0�k�n&1).

Note that this proposition is a generalization of Theorem 2.2 in [3],
which lies in the special case s=&1�n. (We can identify U ( &1�n)

k with U n
k

in (1.1).)

Proof of Proposition 3.3. The unique existence of U (s)
k # Pk is guaran-

teed by Theorem 2.1 in [3] and Proposition 3.2. It suffices to derive the
recursion formula. Since it is obviously valid when s=0, we suppose s{0
and let a=&1�s.
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Let x # [0, 1], t # (&1, 1) and fix them for a while. We consider the case

f (!)=(1+(1&x) t)n! (1&xt)n(1&!) (! # [0, 1]).

Then, as we did in the proof of Theorem 2.1 in [3], we get

(Bn f )[k](x)=\n
k+ t k for all k�n.

Therefore the relation P(s)
n f =�n

k=0 U (s)
k (Bn f )[k] implies

:
n

&=0

(1+(1&x) t)& (1&xt)n&& \n
&+

(ax) (&) (a(1&x)) (n&&)

a(n)

= :
n

k=0
\n

k+ U (s)
k (x) t k. (3.3)

The left-hand side can be expanded as

:
n

&=0 _ :
&

l=0 \
&
l+ (1&x) l t l&_ :

n&&

m=0 \
n&&

m + (&x)m t m& \ax
& +\

a(1&x)
n&& +\a

n+
&1

.

Since the region 0�&�n, 0�l�&, 0�m�n&& corresponds to the region
0�k�n, 0�l�k, 0�&$�n&k when we let k=l+m, &$=&&l, the
above formula equals

:
n

k=0

:
k

l=0

:
n&k

&=0

t k(1&x) l (&x)k&l \&+l
l +\ ax

&+l+\
n&&&l

k&l +
_\a(1&x)

n&&&l+\
a
n+

&1

= :
n

k=0

t k \a
n+

&1

:
k

l=0
\ax

l +\
a(1&x)

k&l + (1&x)l (&x)k&l

_ :
n&k

&=0
\ax&l

& +\a(1&x)&k+l
n&k&& +

= :
n

k=0

t k \a
n+

&1

:
k

l=0 \
ax
l +\

a(1&x)
k&l + (1&x)l (&x)k&l \a&k

n&k+
= :

n

k=0

t k \n
k+\

a
k+

&1

:
k

l=0
\ax

l +\
a(1&x)

k&l + (1&x) l (&x)k&l.
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Therefore, equating coefficients of tk on both sides of (3.3) yields

\a
k+ U (s)

k (x)= :
k

l=0
\ax

l +\
a(1&x)

k&l + (1&x) l (&x)k&l (0�k�n).

Here we let U� k(x) be the right-hand side for all k # N0 and consider its
generating function

:
�

k=0

U� k(x) t k= :
�

k=0

t k :
k

l=0
\ax

l +\
a(1&x)

k&l + (1&x) l (&x)k&l

=_ :
�

l=0 \
ax
l + (1&x) l t l&_ :

�

m=0 \
a(1&x)

m + (&x)m t m&
=(1+(1&x) t)ax (1&xt)a(1&x). (3.4)

Putting t=0 gives

U� 0=U (s)
0 =1. (3.5)

Differentiating (3.4) by t and multiplying it by (1+(1&x) t)(1&xt), we
get

(1+e1(x) t&e2(x) t2) :
�

k=1

kU� k(x) tk&1=&ae2(x) t :
�

k=0

U� k(x) t k

by virtue of

(1+(1&x) t)(1&xt)
d
dt

[(1+(1&x) t)ax(1&xt)a(1&x)]

=&ae2(x) t(1+(1&x) t)ax (1&xt)a(1&x).

Rearrangement of the above formula gives

:
�

k=0

(k+1) U� k+1(x) t k

=&e1(x) :
�

k=0

kU� k(x) tk&e2(x) :
�

k=1

(a&k+1) U� k&1(x) t k.

Equating coefficients of tk (0�k�n&1) on both sides yields

U� 1=0, (k+1) U� k+1=&ke1U� k&(a&k+1) e2U� k&1 (1�k�n&1).
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Recalling that U� k=( a
k) U (s)

k (0�k�n) and remarking that the stipulation
>n&1

+=0 (1++s){0 implies ( a
k){0, we obtain

U (s)
1 =0, (a&k) U (s)

k+1=&k(e1U (s)
k +e2U (s)

k&1) (1�k�n&1);

that is,

U (s)
&1 =0, U (s)

0 =1,

(1+ks) U (s)
k+1=ks(e1 U (s)

k +e2U (s)
k&1) (0�k�n&1),

where U (s)
&1 =0 is a conventional definition and we used (3.5). K

Proposition 3.4. Stancu's operator P(s)
n can be represented as

P(s)
n f (x)= :

n

&=0

f \&
n+_\

nx
& +\

n(1&x)
n&& +

+(1+ns) :
n&1

k=0

(&1)n&k

1+ks \n
k+\

kx
& +\

k(1&x)
n&& +& . (3.6)

Remark. This proposition signifies that we can take out the factor
1+ns from P(s)

n &Ln , as is expected from the identity P( &1�n)
n =Ln .

Proof. Assume s{0 and let a=&1�s. Then

P(s)
n f (x)= :

n

&=0

f \&
n+\

ax
& +\

a(1&x)
n&& +\a

n+
&1

. (3.7)

Since

lim
a � � \ax

& +\
a(1&x)

n&& +\a
n+

&1

=\n
&+ x&(1&x)n&&

and

lim
a � k

(a&k) \ax
& +\

a(1&x)
n&& +\a

n+
&1

=
n !

[>k&1
+=0 (k&+)][>n&1

+=k+1 (k&+)] \
kx
& +\

k(1&x)
n&& +

=&(&1)n&k (n&k) \n
k+\

kx
& +\

k(1&x)
n&& + ,
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we can decompose into partial fractions with respect to a,

\ax
& +\

a(1&x)
n&& +\a

n+
&1

=\n
&+ x&(1&x)n&&& :

n&1

k=0

(&1)n&k (n&k)
a&k \n

k+\
kx
& +\

k(1&x)
n&& + .

Putting a=n on both sides yields

\nx
& +\

n(1&x)
n&& +=\n

&+ x&(1&x)n&&& :
n&1

k=0

(&1)n&k \n
k+\

kx
& +\

k(1&x)
n&& + .

(3.8)

Eliminating ( n
&) x&(1&x)n&& from the above two formulas gives

\ax
& +\

a(1&x)
n&& +\a

n+
&1

=\nx
& +\

n(1&x)
n&& ++ :

n&1

k=0

(&1)n&k (a&n)
a&k \n

k+\
kx
& +\

k(1&x)
n&& + .

Equation (3.7), this identity, and a= &1�s imply (3.6) when s{0. It is
valid also when s=0 because both sides of (3.6) are continuous at s=0. K

Let .(k)=( kx
& )( k(1&x)

n&& ). Then . # Pn and its leading coefficient is
x&(1&x)n&&�(& !(n&&)!). Hence we have

:
n

k=0

(&1)n&k \n
k+\

kx
& +\

k(1&x)
n&& +=2n

1.(0)=\n
&+ x&(1&x)n&&.

Note that this identity gives another proof of (3.8) and indicates that
Theorem 2.2 is valid when :=0.

Proposition 3.5. Stancu's operator P(s)
n satisfies the identity

|
1

0
P(s)

n f (x) dx= :
n

&=0

f \&
n+_

1&s
n+1

+ :
n

k=0

#k+1 \(&1)& \k
&+

+(&1)n&& \ k
n&&++

n(k)sk+1

>k&1
+=0 (1++s)& . (3.9)
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Remark. When s=&1�n, the above identity reduces to

|
1

0
Ln f (x) dx=

1
n

:
n

&=0

f \&
n+_1& :

n

k=0

(&1)k #k+1

_\(&1)& \k
&++(&1)n&& \ k

n&&++& . (3.10)

This is nothing but the Newton�Cotes rule, all the weights in which are
represented explicitly.

Proof. We first prove that for all a # R and for all &, + # N0 ,

|
a

0 \
x
&+\

a&x
+ + dx=\ a+1

&+++1+& :
&++

k=0

(&1)k #k+1

_\ a&k
&++&k+\(&1)& \k

&++(&1) + \k
+++ (3.11)

by using the double generating functions of both sides. Let |u|, |v|<1�3,
and u{v. Then we can calculate

:
�

&=0

:
�

+=0

u&v + |
a

0 \
x
&+\

a&x
+ + dx

=|
a

0
(1+u)x (1+v)a&x dx

=(1+v)a |
a

0 \
1+u
1+v+

x

dx

=
(1+u)a&(1+v)a

log(1+u)&log(1+v)
; (3.12)

:
�

&=0

:
�

+=0

u&v + \ a+1
&+++1+

= :
�

n=1

:
n&1

&=0

u&vn&&&1 \a+1
n +

= :
�

n=1
\a+1

n + un&vn

u&v

=
(1+u)a+1&(1+v)a+1

u&v
; (3.13)
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:
�

&=0

:
�

+=0

u&v + :
&++

k=0

(&1)k #k+1 \ a&k
&++&k+ (&1)& \k

&+
= :

�

k=0

:
k

&=0

:
�

n=0

u&vn+k&&(&1)k #k+1 \a&k
n + (&1)& \k

&+
= :

�

k=0

#k+1 _ :
k

&=0
\k

&+ u&(&v)k&&&_ :
�

n=0
\a&k

n + vn&
= :

�

k=0

#k+1(u&v)k (1+v)a&k

= :
�

k=1

#k(u&v)k&1 (1+v)a&k+1

=
(1+v)a+1

u&v |
1

0 _ :
�

k=1
\x

k+\
u&v
1+v+

k

& dx

=
(1+v)a+1

u&v |
1

0 _\1+
u&v
1+v+

x

&1& dx

=
(1+v)a

log(1+u)&log(1+v)
&

(1+v)a+1

u&v
, (3.14)

where we noticed |(u&v)�(1+v)|�( |u|+ |v| )�(1&|v| )<1. Applying this
identity, we have also

:
�

&=0

:
�

+=0

u&v + :
&++

k=0

(&1)k #k+1 \ a&k
&++&k+ (&1) + \k

++
= :

�

&=0

:
�

+=0

v&u + :
&++

k=0

(&1)k #k+1 \ a&k
&++&k+ (&1)& \k

&+
=

(1+u)a

log(1+v)&log(1+u)
&

(1+u)a+1

v&u
. (3.15)

Since (3.13)&((3.14)+(3.15)) is equal to (3.12), equating coefficients of
u&v + yields (3.11). Putting +=n&&, we obtain

|
a

0 \
x
&+\

a&x
n&&+ dx=\a+1

n+1+& :
n

k=0

(&1)k #k+1

_\a&k
n&k+\(&1)& \k

&++(&1)n&& \ k
n&&++ .
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If a(n){0 then we get

|
1

0 \
ax
& +\

a(1&x)
n&& + a dx=

a+1
n+1 \

a
n+& :

n

k=0

(&1)k #k+1

_\(&1)& \k
&++(&1)n&& \ k

n&&++
n(k)

a(k) \a
n+;

that is,

|
1

0 \
ax
& +\

a(1&x)
n&& +\a

n+
&1

dx=
a+1

(n+1) a
& :

n

k=0

(&1)k #k+1

_\(&1)& \k
&++(&1)n&& \ k

n&&++
n(k)

a } a (k) .

Therefore, putting a=&1�s and (3.7) imply (3.9) when s{0. It is valid
also when s=0 because both sides of it are continuous at s=0. K

4. PROOFS OF THE MAIN RESULTS

Now we are to prove all the theorems given in Section 2.

Proof of Theorem 2.1. When (n&1) |s|<1, we can expand for each
x # [0, 1]

U (s)
k (x)= :

�

j=0

(j, k(x)(&s) j (&1�k�n). (4.1)

The recursion formula in Proposition 3.3 immediately implies

(j, &1=0 ( j�0), (0, 0=1, (j, 0=0 ( j�1).

Furthermore, for every k satisfying 0�k�n&1, it also implies

(1+ks) :
�

j=0

(j, k+1(x)(&s) j

=ks \e1(x) :
�

j=0

(j, k(x)(&s) j+e2(x) :
�

j=0

(j, k&1(x)(&s) j+ .
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Rearrangement of this formula gives

:
�

j=0

(j, k+1(x)(&s) j

=k :
�

j=1

((j&1, k+1(x)&e1(x) (j&1, k(x)&e2(x) (j&1, k&1(x))(&s) j.

Equating coefficients of (&s) j on both sides yields

(0, k =0 (1�k�n),

(j, k+1=k((j&1, k+1&e1(j&1, k&e2(j&1, k&1) ( j�1, 0�k�n&1).

Thus the recursion formula in this theorem is proved. Obviously, it gives

(j, k=0 (2 j<k�n). (4.2)

Therefore we obtain from Proposition 3.3 and Definition 2.1 that

:Bn f= :
n

k=0

(Bn f )[k] :
:

j=0

(j, k

n j = :
2:

k=0

(Bn f )[k] :
:

j=0

(j, k

n j

= :
:

j=0

1
n j :

2 j

k=0

( j, k(Bn f )[k].

In addition, it is trivial that (j, k # Pk . K

Proof of Theorem 2.2. We can calculate

1+ns
1+ks

=1+
(n&k) s

1+ks
=1+(n&k) s :

�

j=0

(&ks) j.

If we truncate this series at degree : with respect to s, it becomes

1+(n&k) s :
:&1

j=0

(&ks) j=1+
(n&k) s

1+ks
(1&(&ks):).

If we put s=&1�n, this formula reduces to (k�n):. Therefore Proposi-
tion 3.4 and Definition 2.1 imply
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: Bn f (x)= :
n

&=0

f \&
n+_\

nx
& +\

n(1&x)
n&& +

+ :
n&1

k=0

(&1)n&k \n
k+\

kx
& +\

k(1&x)
n&& +\k

n+
:

&
= :

n

&=0

f \&
n+ :

n

k=0

(&1)n&k \n
k+\

kx
& +\

k(1&x)
n&& +\k

n+
:

. K

Proof of Theorem 2.3. We deduce this theorem from Theorem 2.4 in
[3]. It suffices to verify that Tn= :Bn satisfies all the conditions required
in the theorem.

We identify the given : with : in the theorem and let K=2:. Then
Theorem 2.1 shows that we can let

V n
k= :

:

j=0

(j, k

n j (n # N, 0�k�n),

which clearly satisfies the condition (a) in Theorem 2.4 in [3]. Since (4.1)
implies

U n
k(x)=U ( &1�n)

k (x)= :
�

j=0

(j, k(x)
n j ,

we can regard V n
k(x) as the asymptotic series truncated at j=: of U n

k(x)
with respect to n. This relationship is parallel for vk, l (n) and uk, l (n) [3].
Therefore, Theorem 2.3 in [3] implies the conditions (b) and (c). In
addition, it is trivial that

lim
n � �

n:+1(V n
k&U n

k)=&(:+1, k

in the sense of & }& (0�k�2:+2). K

Proof of Theorem 2.4. It is presented in [1, p. 824] and its proof is
given in [2, Section 60] that the Stirling numbers of the second kind have
the generating function

tk

>k
+=0 (1&+t)

= :
�

j=k

S( j, k) t j (k # N0 , t # R, k |t|<1).

This identity and the conventional definition S(&1, &1)=1, S( j, &1)=0
( j�0) imply

sk

>k&1
+=0 (1++s)

=(&1)k :
�

j=k

S( j&1, k&1)(&s) j.
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Hence Proposition 3.5 becomes

|
1

0
P(s)

n f (x) dx= :
n

&=0

f \&
n+_

1&s
n+1

& :
n

k=0

(&1)k #k+1 \(&1)& \k
&+

+(&1)n&& \ k
n&&++ n(k) :

�

j=k

S( j&1, k&1)(&s) j+1& .

Immediately we obtain the theorem from Definition 2.1. K

Now we prepare the following two lemmas for the proof of Theorem 2.5.

Lemma 4.1. Let n, k, & # N0 . If 0�k�n and 0�&�n�2 then

\k
&+�\ k

n&&+ .

The proof is clearly given by the inequality

\k
&+&\ k

n&&+=
k(&)

(n&&)!
((n&&)(n&2&)&(k&&) (n&2&))�0.

Lemma 4.2. For every n # N and : # N0 , if :In is not positive then none
of the ;In (;>:, ; # N0 _ [�]) is positive.

Proof. Suppose :In is not positive. Then it is obvious that :�1 because
0In is positive. Moreover, there exists some & such that :wn, &<0, and we
can assume &�n�2 without loss of generality because :wn, n&&= :wn, & .

Lemma 4.1 shows

\k
&++(&1)n \ k

n&&+�0 (0�k�n).

Furthermore, for every k�0,

(&1)k #k+1=
1

(k+1)! |
1

0
x `

k

+=1

(+&x) dx>0.

Moreover, all the Stirling numbers of the second kind are nonnegative, as
is well known. Therefore, Theorem 2.4 implies that

:wn, & � :+1wn, & for all :�1 if & is even;

:wn, &� :+1wn, & for all :�1 if & is odd.
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Thus 1wn, &>0 and : wn, &<0 imply that & must be even and consequently

;wn, &� } } } � :+1wn, &� :wn, &<0.

(Note that this inequality is valid even if ;=�.) Therefore ;In is not
positive. K

Proof of Theorem 2.5. When 1�n�7 or n=9, since all the weights in
the Newton�Cotes rule are positive (see [1, p. 886] or calculate them using
(3.10)), � In is positive. Thus :(n)=�.

When n=8 or n�10, � In is not positive [5, p. 156], and it must be
possible to find such an : # N0 that :In is positive but :+1In is not positive.
Then Lemma 4.2 guarantees that the found : is nothing but :(n).

Furthermore, for all n # N, Lemma 4.2 guarantees that all the :In

(:<:(n), : # N0) are positive.
To complete the proof, we only have to determine :(n) for each n. We

have obtained all the necessary data with the computer algebra system
Mathematica. Here we list some of them; details are available from the
author. (We let :Wn, &=n: wn, & in the list. Since :Wn, n&&=:Wn, & it suffices
to examine :Wn, & only in the case 0�&�[n�2].)

(13 W8, &)4
&=0 =(206412613269, 1027581059398, 212716917982,

1258456018206, 87224921170)�687194767360,

14W8, 4=&1200668453�206158430208.

(13W10, &)
5
&=0=(3529060133449, 18442747661870, 2368669823883,

23813383005996, 117973634934,

23456331479736)�12000000000000,

14 W10, 4=&4318979540557�20000000000000.

(13W11, &)
5
&=0=(998147479495, 5327297957586, 478794941918,

7017006075333, 414657467478,

4594666338516)�3423740047332,

14 W11, 4=&383569519901�12553713506884.

Similarly we can obtain the necessary data for every n�104.
When n�105, it is of course impossible to calculate all the data, which

are infinite. However, there are general and skillful expressions of them,
which clearly indicate the signs of the weights. Letting a=1�n(>0) and
b=1�105&1�n(�0), we present them as follows:
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(8Wn, &)
7
&=0

=\1070017
3628800

+
22418548323091
114354828000000

a+
25359736267

544546800000
ab

+
5969355437

93350880000
a2b+

12887747
444528000

a2b2+
6151

529200
a3b2+

1
210

a3b3,

638662806978248
422130126796875

+
57436491956239
42883060500000

b+
1833683798503
980184240000

b2

+
27475395977
18670176000

b3+
3127027
4939200

b4+
289943

2116800
b5+

23
1680

b6,

103613
403200

+
4145056375238327
1029193452000000

a+
33409341839701
3267280800000

ab

+
1395652211053

93350880000
ab2+

5753926289
444528000

ab3+
546353
88200

ab4+
3193
2520

ab5,

976909501271513
562840169062500

+
30521491285739
4764784500000

b+
23553221988539

980184240000
b2

+
926729577581
18670176000

b3+
875979869
14817600

b4+
80715931
2116800

b5+
51881
5040

b6,

298951
725760

+
1351609746105581
205838690400000

a+
62380941727861
1960368480000

ab

+
1551304931951

18670176000
ab2+

10858579523
88905600

ab3+
2511179

26460
ab4+

3785
126

ab5,

419377838606459
337704101437500

+
472640006070649
128649181500000

b+
22235854586693
980184240000

b2

+
151076675203

2074464000
b3+

5677877201
44452800

b4+
48719261

423360
b5+

206453
5040

b6,

3349879
3628800

+
88142235701683
68612896800000

a+
90175372176901
9801842400000

ab

+
3193508098591

93350880000
ab2+

10144953041
148176000

ab3+
36465791

529200
ab4+

67273
2520

ab5,

113426694758929
112568033812500

+
21499631502649

128649181500000
b+

473440190611
326728080000

b2

+
117865768367
18670176000

b3+
640930781
44452800

b4+
2274851
141120

b5+
33953
5040

b6+ ,
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8Wn, &=1 (8�&�[n�2]),

9Wn, 4

=&\ 7712181462239
6331951901953125

+
1666745232581279

12068607656250
b+

379336221741227
4594613625000

b2

+
3232816157663

11668860000
b3+

375083492797
666792000

b4+
21824429909

31752000
b5

+
35095393

75600
b6+

31717
240

b7+ . K

5. COMPARISON BETWEEN THE TWO KINDS OF OPERATORS

This final section is devoted to comparing our new operator with
Sablonnie� re's.

Equations (4.1) and (4.2) being applied, the Lagrange, the Sablonnie� re,
and our operators can be represented as

Ln f (x)= :
n

k=0

(Bn f )[k] (x) :
�

j=0

(j, k(x)
n j (5.1)

= :
�

j=0

1
n j :

n

k=0

(j, k(x)(Bn f )[k] (x)

= :
�

j=0

1
n j :

2 j

k=0

(j, k(x)(Bn f )[k] (x), (5.2)

B(K )
n f (x)= :

[K, n]

k=0

(Bn f )[k] (x) :
�

j=0

(j, k(x)
n j ,

:Bn f (x)= :
:

j=0

1
n j :

n

k=0

(j, k(x)(Bn f )[k] (x)

= :
:

j=0

1
n j :

2 j

k=0

(j, k(x)(Bn f )[k] (x)

= :
2:

k=0

(Bn f )[k] (x) :
:

j=0

(j, k(x)
n j . (5.3)
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As we can see from the above formulas, B (K )
n is obtained by truncating at

k=K the first sum in (5.1). On the other hand, :Bn is obtained by truncating
at j=: the first sum in (5.2). Therefore both can be regarded as truncated
operators of Ln , but the modes of truncation are distinct. It is interesting
that, as (5.3) shows, :Bn is truncated also at k=2: automatically, not
compulsorily.

Now we itemize the advantages of our operator as follows.

(1) The value of its norm is much smaller.

(2) The parameter : corresponds exactly to the order of its
convergence rate.

(3) It is simply defined with Stancu's operator and we can derive
formulas about our operator from ones about Stancu's operator.

Let us compare Table II with Table I, remarking that the convergence
rates of [:Bn f ]n , [B (2:)

n f ]n , and [B (2:+1)
n f ]n are of the same order. Here

we explain the general procedure of calculating &B (K )
n & and &:Bn&.

Let T be an operator represented as the form

Tf = :
n

&=0

f \&
n+ {& ({& # Pn&[0], f : [0, 1] � R)

and 4 be the Lebesgue function of T; that is,

4(x)= :
n

&=0

|{&(x)| (x # [0, 1]).

By solving algebraic equations numerically with computer, we can deter-
mine

X0= .
n

&=0

[x # (0, 1) | {&(x)=0],

and furthermore,

X=X0 _ [0, 1] _ [x # (0, 1)&X0 | 4$(x)=0].

Then

&T&= max
x # [0, 1]

4(x)=max
x # X

4(x).

Tables I and II were obtained by applying the above procedure to the cases
T=B(K )

n and T= : Bn , respectively.
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The two tables strongly suggest that

&: Bn&�&B(2:)
n &�&B (2:+1)

n & for all n # N and : # N0 .

This inequality is very difficult to prove and open so far, but we can
explain its plausibility qualitatively, not quantitatively. Recall that B (K )

n

(K=2:, 2:+1) is obtained by putting s=&1�n in �[K, n]
k=0 U (s)

k (Bn f )[k],
which has poles at s=&1�+ (+=1, 2, ..., min[K, n]&1). (See the recursion
formula for U (s)

k in Proposition 3.3.) We consider that these poles cause
B(K )

n to be unstable. Therefore we should remove the poles for the sake of
stability, while preserving the good convergence property of [B(K )

n ]n . For-
tunately, this is in fact possible by truncating at degree : the Maclaurin
series of P(s)

n f (regarded as a function of s). Furthermore, in this case, the
number of the terms in the truncated series is minimum in order that the
condition (c) in Theorem 2.4 in [3] is satisfied when we let s=&1�n. Con-
sequently, we infer that :Bn is more stable than B (2:)

n , which means the
advantage (1). At the same time, we also speculate that B (2:+1)

n is more
unstable than B (2:)

n (when 2:+1�n) because �2:+1
k=0 U (s)

k (Bn f )[k] has the
one extra pole s=&1�(2:) compared with �2:

k=0 U (s)
k (Bn f )[k].

The advantage (2) is clear from Theorem 2.3. Furthermore, recall that
the advantage (3) played an essential role in the proofs of Theorems 2.2
and 2.4. (On the other hand, Sablonnie� re's operator has no corresponding
procedures of calculation. For example, if we want to integrate B (K )

n f on
[0, 1], we cannot help using repeated integration by parts, which is com-
plicated.)

Therefore, we conclude that our new class of modified Bernstein
operators is more natural and essential for our purpose, and more con-
venient both theoretically and practically, than that of Sablonnie� re.

In a forthcoming paper, we will present an improved result of Corollary 2.1,
which weakens the differentiability condition about integrands.
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